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ABSTRACT

MicroRNAs (miRNAs) are short RNAs that post-transcriptionally regulate the expression of target genes by binding to the target
mRNAs. Although a large number of animal miRNAs has been defined, only a few targets are known. In contrast to plant
miRNAs, which usually bind nearly perfectly to their targets, animal miRNAs bind less tightly, with a few nucleotides being
unbound, thus producing more complex secondary structures of miRNA/target duplexes. Here, we present a program, RNA-
hybrid, that predicts multiple potential binding sites of miRNAs in large target RNAs. In general, the program finds the
energetically most favorable hybridization sites of a small RNA in a large RNA. Intramolecular hybridizations, that is, base
pairings between target nucleotides or between miRNA nucleotides are not allowed. For large targets, the time complexity of
the algorithm is linear in the target length, allowing many long targets to be searched in a short time. Statistical significance of
predicted targets is assessed with an extreme value statistics of length normalized minimum free energies, a Poisson approxi-
mation of multiple binding sites, and the calculation of effective numbers of orthologous targets in comparative studies of
multiple organisms. We applied our method to the prediction of Drosophila miRNA targets in 3'UTRs and coding sequence.
RNAhybrid, with its accompanying programs RNAcalibrate and RNAeffective, is available for download and as a Web tool on

the Bielefeld Bioinformatics Server (http://bibiserv.techfak.uni-bielefeld.de/rnahybrid/).
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INTRODUCTION

MicroRNAs (miRNAs) are short RNAs that post-transcrip-
tionally regulate the expression of target genes by binding to
the target mRNAs. Although a large number of animal
miRNAs has been defined (e.g., Lau et al. 2001), only a few
targets are known. lin-4 and let-7 control developmental
timing in Caenorhabditis elegans by repressing their target
genes, lin-14, lin-28, and lin-41 (Lee et al. 1993; Moss et al.
1997; Reinhart et al. 2000; Slack et al. 2000; for review, see
Grosshans and Slack 2002). The C. elegans hunchback ho-
molog, hbl-1, has been identified as a probable further tar-
get of let-7 (Abrahante et al. 2003; Lin et al. 2003). The
Drosophila melanogaster proapoptotic gene hid has been
demonstrated to be a target of the newly identified bantam
miRNA (Brennecke et al. 2003). Lewis et al. (2003) provide
experimental support for at least eight human targets
(SMAD-1, SDF-1, BRN-3b, ENX-1, N-MYC, PTEN, Deltal,
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and Notchl). In contrast to plant miRNAs, which usually
bind nearly perfectly to their targets (Rhoades et al. 2002),
animal miRNAs bind less tightly, with a few nucleotides
being unbound, thus producing more complex secondary
structures of miRNA/target duplexes. The combinatorial
nature of secondary structure formation, that is, the huge
number of possible bindings as a result of loops of unpaired
nucleotides, makes prediction of miRNA targets by simple
pattern matching or BLAST searches impossible. A number
of further Drosophila miRNA targets has recently been pre-
dicted by combining information about sequence conser-
vation between D. melanogaster and D. pseudoobscura, and
secondary structure prediction by energy minimization
(Stark et al. 2003). Those authors first identified potential
binding sites by searching for near-perfect base comple-
mentarity to the 5'-end of the miRNAs, and then computed
the secondary structure by applying the standard folding
program mfold (Zuker 2003) to the concatenation of po-
tential binding site and miRNA. Similar approaches have
been presented in Enright et al. (2003) and Rajewsky and
Socci (2004), and for mammals and vertebrates, in Lewis et
al. (2003). As noted by Stark et al. (2003), the drawbacks of
this approach are, first, that the sequences have to be con-
catenated with a short linker sequence that can lead to
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artefacts in the prediction, and second, that hybridizations
of the target with itself, or of the miRNA with itself, or of
both with the linker, can happen. An additional drawback is
that for prediction of multiple bindings in one target, the
appropriate potential binding sites have to be cut out and
folded separately.

Here, we present a program, RNAhybrid, that directly
predicts multiple potential binding sites of miRNAs in large
target RNAs. In general, the program finds the energetically
most favorable hybridizations of a small RNA to a large
RNA. Intramolecular hybridizations, that is, base pairings
between target nucleotides or between miRNA nucleotides
are not allowed. The program predicts optimal and addi-
tional suboptimal, nonoverlapping hits, either up to a user-
defined number or with free energies up to a user-defined
energy or p-value threshold. The user can force hybridiza-
tions to contain perfect helices in the 5'-part of the miRNA,
for example, from nucleotides 2-7. For large targets, the
time complexity of the algorithm is linear in the target
length, allowing many long targets to be searched in a short
time.

In the analysis of large databases of potential target se-
quences, a thorough statistical analysis of minimum free
energies (MFEs) or other scores is of utmost importance.
Current analyses do not sufficiently address this topic ac-
curately. Stark et al. (2003) state that “folding energies of
more than 3 standard deviations above the mean (Z = 3)
are expected to occur for only 0.3% of random matches,”
which apparently assumes folding energies to be normally
distributed. However, since such energies are results from
an optimization procedure, this assumption is not appro-
priate. Rather, such energies are extreme value distributed
and, for example, for a standard extreme value distribution,
the probability of exceeding the mean score by more than
three standard deviations is nearly 5%. Using Z-scores in
this way thus vastly underestimates the probability of
chance occurences. In addition, the authors calculate E-
values for the bantam miRNA by fitting an exponential
function to the tail of a background empirical distribution
function, but no such analysis is provided for the other
miRNAs. In Enright et al. (2003), the authors repeated their
experiment 100 times on shuffled sets of 73 miRNAs and
compared the outcome for the real miRNAs with the back-
ground. Again, this assessment of false positive rates is not
miRNA specific. Furthermore, the dinucleotide composi-
tion of the miRNAs is apparently not preserved, although
this can be expected to be a major influence on duplex
energies. In Rajewsky and Socci (2004), it has been recog-
nized that miRNA-specific statistics are necessary due to
variations in GC content or other features of sequence com-
position. Nevertheless, statistics of multiple target sites in
a single sequence is not provided. In Lewis et al. (2003),
miRNAs are carefully shuffled to preserve their dinucleo-
tide distributions and other properties. On this basis,
the authors compare numbers of predicted targets for real
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miRNAs (the “signal”) and shuffled miRNAs (the “noise”),
but do not assign E-values to individual hits. None of the
published approaches addresses the problem of statistical
dependence between orthologous target sequences in cross-
species analyses.

We complement the optimization of miRNA/target du-
plexes by a thorough statistical analysis of MFEs. We nor-
malize MFEs with the sequence lengths of miRNAs and
targets, and model such normalized MFEs as extreme value
distributed. The parameters of these distributions are esti-
mated specifically for every miRNA with a second program,
RNAcalibrate, and are subsequently used to assign p-values
to normalized MFEs. The significance of multiple binding
sites in a single target is evaluated with a Poisson statistics.
For comparative studies on multiple organisms such as dif-
ferent Drosophila species, we combine Poisson p-values
from the orthologous targets using the effective number of
sequences. This effective number respects the fact that re-
lated sequences cannot always be treated as statistically in-
dependent. Calculation of these effective numbers is
miRNA and target specific and is accomplished by a third
program, RNAeffective.

We applied RNAhybrid, RNAcalibrate, and RNAeffective
in the prediction of miRNA 3"UTR targets in D. melano-
gaster, D. pseudoobscura, and Anopheles gambiae. We were
able to significantly identify previously predicted or experi-
mentally verified targets and a number of additional new
ones. Results from previous predictions are revisited and
discussed from a statistical point of view. In addition to the
3'UTRs, we searched coding sequences from D. melanogas-
ter and A. gambiae. RNAhybrid, RNAcalibrate, and RNA-
effective are available for download and as a Web tool on
the Bielefeld Bioinformatics Server (http://bibiserv.techfak.
unibielefeld.de/rnahybrid/).

RESULTS
Algorithm and implementation

RNAhybrid is an extension of the classical RNA secondary
structure prediction algorithm (Zuker and Stiegler 1981) to
two sequences. The miRNA is hybridized to the target in an
energetically optimal way (i.e., yielding the minimum free
energy, MFE), forbidding intramolecular base pairings and
branching structures (multiloops). Energy parameters are
from Mathews et al. (1999). Using the Dynamic Program-
ming technique, the program calculates the MFE hybrid-
izations of all possible start positions in the miRNA and in
the target. Bulge loops (i.e., stretches of unpaired nucleo-
tides in either of the sequences) and internal loops (i.e.,
stretches of unpaired nucleotides in both sequences) are
restricted to a constant maximum length in either sequence
(which is set to 15 as a default value). If m and » are the
lengths of the target and the miRNA, respectively, and c¢ is
the maximal length of a loop in either sequence, the space
consumption of the algorithm is of the order O(mn), and
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the time consumption is of the order O(c*mn). If m is much
larger than » and ¢, which is usually the case for miRNAs
and their potential targets, the space and time consumption
is linear in the target length m. Additional optimal or sub-
optimal binding sites are found by masking previously re-
ported sites and running the algorithm again with the con-
straint that masked nucleotides must not be part of a hy-
bridization.

The original version of RNAhybrid was implemented in
an extension of the Algebraic Dynamic Programming
(ADP) framework (Giegerich 2000; Giegerich et al. 2004)
that can handle two input sequences directly. The ADP
version was translated into the C programming language by
an extension of the ADP compiler (Giegerich and Steffen
2002), and subsequently hand-tuned in a few places. Com-
mand line interface and file handling was implemented di-
rectly by hand. The graphical output uses code from the
Vienna RNA package (Hofacker 2003). The Dynamic Pro-
gramming recurrences are shown in Table 1. The ADP ver-
sion can be tested on the ADP Web page at http://bibiserv.
techfak.uni-bielefeld.de/adp/. RNAhybrid and its accompa-
nying programs RNAcalibrate and RNAeffective (see below)
are available for download and as a Web tool on the Bielefeld
Bioinformatics Server (http://bibiserv.techfak.unibielefeld.de/
rnahybrid/).

TABLE 1. Dynamic Programming recurrences for miRNA/target
hybridization

H;;=min{0, T, ;, C }
T;,;=min{T,, ,B; }
B;j=min{B, .,
eds(i+ 1, j+ 1, Cpyy jun)s
edt(i+ 1, j, Ci\y ),
edb(i,j+ 1, C; 1)}
C; ; = if can_pair (x;,, ;1) then
min {sr(i + 1, j+ 1, Cipy ;1)
i+2§k§mrmr,1w,m4){bt(l *1j+ 1k Gl
){bb(i+ 1,j+1,1, Cyq )b,

min
j+2=I=min(j+16,n—1

min o .
ir2=k=min(i+16,m-0 {l(i + 1, j+ 1, k, |, Ci)},
j+2=I=min(j+16,n—1)
eli+1,j+1,m, n)}
else

Dynamic Programming recurrences for miRNA/target hybridiza-
tion of sequences x = x; ... x,, and y =y, ... y,. mis the length
of the target x, n the length of the miRNA y. The minimum free
energy (MFE) is in Hy,. T (top) is used for skipping leading target
bases, B (bottom) for skipping leading miRNA bases, and C for
closed substructures, i.e., C;; is the MFE on the sequences starting
at i+ 1 and j + 1, respectively, where bases x;,; and y;,, form a
pair. eds, edt, and edb are energy functions for symmetric dangling
bases, a top dangling base and a bottom dangling base, respec-
tively. sris the energy of a stacked pair, bt and bb are energies for
bulges, il is the energy of an internal loop, and el the energy of the
open end. Undefined values are . Only C needs to be tabulated to
achieve the best time complexity. T and B are additionally tabu-
lated to speed up the backtracking procedure which gives the hy-
bridization itself.

Prevention of hybridization artefacts

Figure 1 presents two examples of artefacts that can arise
from folding the concatenation of a potential target site and
a miRNA with standard folding programs like mfold (Zuker
2003) or RNAfold (Hofacker 2003; data provided by A.
Stark, pers. comm.). In the first example, part of the target
hybridizes with the linker. In the second example, part of
the target hybridizes with itself. Whereas the hybridization
between a miRNA and a target may indeed form an internal
hairpin in either sequence as shown, the hybridization en-
ergy calculated by the folding program would include the
energy of the hairpin, and would therefore be a misleading
indicator of the strength of hybridization. Although these
artefacts could have been prevented by setting appropriate
base-pairing constraints, it would still be difficult to assign
the correct energy. Whereas the contribution from the
linker is the same for each hybridization, unpaired nucleo-
tides at the 5'-end of the miRNA or the 3'-end of the target
would constitute a bulge or internal loop, thus distorting
the overall free energy in a nucleotide and loop-length-
dependent way. None of these considerations are necessary
for RNAhybrid, which automatically gives the desired re-
sults.

Searching a target database

Due to its linear time efficiency, RNAhybrid can be used to
search large databases of long sequences. On an Ultra-
SparclIll 900 MHz, searching C. elegans 3'UTRs from the
UTR database (Pesole et al. 2002; http://bighost.area.
ba.cnr.it/BIG/UTRHome/, 882 sequences with an average
sequence length of 301 bases, 265,730 bases altogether) with
the let-7 miRNA takes 23 sec. Figure 2 shows the four best
MEFE duplexes. These top-hits are the known targets of let-7
as follows: lin-14, lin-41, daf-12, and hbl-1. The next-best
hybridizations are the metabotropic glutamate receptor ho-
molog CELF35-1 with an MFE of —27.1 kcal/mole and the
stress-responsive gene CePqM96 with an MFE of 26.6 kcal/
mole (data not shown). The ability of RNAhybrid to cor-
rectly identify four bona-fide targets from a large data set of
over 265 Kb indicates its potential for identifying unknown
miRNA targets. The fact that two further hits were found
that have free energies similar to those of the known let-7
targets, strongly suggests that these candidates may merit
further experimental investigation.

Multiple hits per target

RNAhybrid can predict multiple potential binding sites per
target. To illustrate this, Figure 3 shows the two energeti-
cally best hits between the ler-7 miRNA and the 3'UTR of
the C. elegans lin-41. The minimum free energies are —29.0
kcal/mole and —28.0 kcal/mole, respectively. The next-best
hit has a far worse energy of —20.5 kcal/mole (data not
shown). The hybridizations of the two hits are exactly the

1509

www.rnajournal.org



Rehmsmeier et al.

FIGURE 1. Artefacts of target/miRNA concatenation. The linker sequence is CGNNNNNNCG.
Hybridized are parts of 3'UTRs from D. melanogaster and the miR-2b miRNA. (A) The
structure (from RNAfold) exhibits hybridization between target and linker (arrow). (B) Cor-
responding prediction from RNAhybrid that shows no artefact. (C) The structure (from
RNAfold) exhibits self-hybridization of the target (arrow). (D) Corresponding prediction from
RNAhybrid that shows no artefact. The 3"UTRs are from CG1969-RB (A,B) and CG30120-RA
(C,D). The structures are drawn counter-clockwise, with the target followed by the miRNA. For

RNAhybrid, the target is shown with its 5'-end additionally marked.

ones published (cf., for example, Grosshans and Slack
2002).

Forcing miRNA 5’-helices

It has been proposed that miRNA/target duplexes have to
have perfect helices in the miRNA 5’-end to be functional.
This idea is supported by the observation that known bind-
ing sites are conserved in their 3’'-ends, which can thus all
form helices with the miRNA 5’-ends (Lim et al. 2003), and
its validity has recently been demonstrated experimentally
in Doench and Sharp (2004). In Stark et al. (2003) and
Lewis et al. (2003), this observation is an assumption in the
prediction of further targets, in that it is used in the first
step of finding sequence elements that show perfect
complementarity to a 5'-part of the miRNA. This is to some
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D extent the case in Enright et al. (2003),
where 5’-complementarity is rewarded,
and in Rajewsky and Socci (2004),
gﬁ;“ where the presence of a nucleus of
7 complementarity is assumed, but its po-
sition in the miRNA is determined in a

e . training phase. Requiring such a nucleus

W g biases th d di
‘iy‘;‘[\g .1ases the secop ary structure predic-
£ tion toward optimal structures that have

- an uninterrupted helix in the miRNA
5'-/target site 3'-region, effectively re-
ducing the search space of secondary
structures in the energy minimization
procedure, and thus increasing the sta-
tistical significance of predicted binding
sites. This has also been observed in
Lewis et al. (2003), and the authors sug-
gest that the importance of the “seed” in
silico reflects its importance in vivo,
and speculate that this segment nucleates pairing between
miRNAs and their target sequences. RNAhybrid imple-
ments this structural constraint directly. The user can, if he
or she wishes to do so, define which part of the miRNA has
to form a perfect helix (e.g., from nt 2 to nt 7), and only
structures fulfilling this constraint are considered in the
Dynamic Programming optimization.

Figure 4 demonstrates the increase in statistical signifi-
cance with extreme value distribution (EVD) density func-
tions with and without a 5'-helix constraint. The distribu-
tion parameters are mean values for Drosophila miRNAs
(see sections on negative normalized MFEs and extreme
value statistics below). Negative normalized MFEs for 5'-
helix-constrained duplexes are shifted considerably toward
weaker energies, due to the search-space reduction de-

Fu “I' A
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target: 3CEL000914 LS
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target: 3CELO00772
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mfe: -28.2 kcal/mol
position: 1264

FIGURE 2. The four best minimum free energy (MFE) duplexes of the let-7 miRNA and C. elegans 3'UTRs (5'-end marked) from the UTR
database (http://srs.ebi.ac.uk). The targets are 3CEL000274, lin-14, 3CEL000914 lin-41, 3CEL000790 daf-12, and 3CEL000772 hunchback-related
protein hbl-1. The alignments show the complete miRNAs. The target UTRs are shown where they hybridize to the respective miRNA, plus
dangling bases on either side. Each UTR was only searched for one optimal hit. Note also that in database search mode, RNAhybrid normally gives
a textual representation of hybridizations to avoid the accumulation of a large number of plots.

1510  RNA, Vol. 10, No. 10



Prediction of microRNA/target duplexes

L
W
L

. i e’

target: lin-41 %

miRNA:  let-7 i

mfe: -29.0 kcal/mol| byl

position: 737 e gy

target: lin-41
miRNA: let-7
mfe: -28.0 kcal/mo
position: 688

FIGURE 3. The top two hits of the let-7 miRNA in the 3'UTR of the C. elegans lin-41 (5'-end marked). The first hit was also among the top hits

in the target database search (cf. Fig. 2).

scribed above. This has a strong influence on the statistical
significance of moderate MFEs. For example, the p-value of
an MFE of —25kcal/mole between a miRNA of length 22
and a target sequence of length 2000 is 0.045 with 5'-helix
constraint and 0.21 without. For lower MFEs and smaller
targets, however, the relative difference becomes smaller,
for example, 3.7e-5 compared with 4.6e-5 for an MFE of
—35kcal/mole in a target sequence of length 500.

Length normalization of minimum free energies

Due to the shortness of miRNAs, good MFEs can occur
frequently by chance. The longer a putative target sequence,
the better such random energies will be. As a consequence,
largely negative MFEs are meaningless if they are the result
of searching large sequences. Borrowing a result from
Karlin and Altschul (1990), we can normalize MFEs to
eliminate the influence of sequence length as follows.

If e is the minimum free energy, m the length of the target
sequence searched, and # the length of the miRNA, the
negative normalized energy e, is defined as

e
e =——. 1
" log(mn) @
25
2.
15+
z
£
o
'I H 1
|
05+ |
95 2 25 3 35

negative normalised mfe

FIGURE 4. Extreme value distribution density functions. The loca-
tion and shape parameters are mean values for Drosophila miRNAs.
The left curve shows negative normalized MFEs of duplexes that are
constrained to have a miRNA 5’-helix from nucleotides 2—7. The right
curve shows such energies without a helix constraint, thus allowing
unpaired nucleotides in all parts of the duplexes.

Extreme value statistics of negative normalized
minimum free energies

Minimum free energies (MFEs) are results from an optimi-
zation procedure, in our case, the optimization of duplexes
between a miRNA and a putative target sequence. A result
from probability theory states that the maximum of inde-
pendent random variables follows an extreme value distri-
bution (EVD; Gumbel 1958). Negative normalized MFEs,
where high positive values correspond with low MFEs, can
thus be modeled with EVDs. The distribution function of
the standard EVD is

P[G = t] = exp(—exp(-1)). 2)

With a location parameter & and a scale parameter 6, we get
the shifted and rescaled distribution function

t—§
PZ= t]=exp(—exp<—T)>. 3)

The distribution function ¥ of an extreme value distri-
bution can be transformed to a straight line by log(-log(¥)). If
a sample distribution is approximately extreme value dis-
tributed, its cumulative density function can thus be
transformed to an approximately straight line. To this
line, the parameters of the EVD can be fit by least square
linear regression (Waterman and Vingron 1994). If a is the
slope and b the intercept of the regression line, we get the
estimators

R 1
b=—- 4)
and

£=b0. (5)

To improve the estimates in the tail of the distribution,
we do the fit only for normalized MFEs larger than 2.0,
which corresponds to an MFE of ~20 kcal/mole from a
miRNA of length 22 in a target of length 1000. We also skip
the 1% best MFEs to get a more robust estimate. Figure 5
shows a fit to a distribution of negative normalized MFEs
from the bantam miRNA and 5000 random target se-
quences.

For each predicted duplex between a miRNA and a target
sequence with a certain MFE, we can now calculate the
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FIGURE 5. Fitting extreme value distribution parameters. The crosses
show the log(-log) transformed empirical cumulative density function
of negative normalized MFEs from the bantam miRNA and 5000
random target sequences. The straight line is fitted to negative nor-
malized MFEs larger than 2.0 without the top 1% of data points.

probability that such an MFE or a better one occurs by
chance, the p-value:

en_é
P[Zzen]=1—exp(—exp(— ; )) (6)

where e, is the negative normalized MFE according to
Equation 1, and £ and 0 are the estimated EVD parameters.

The expected number of such chance MFEs, the E-value,
is the product of p-value and number of sequences in the
target database, M:

E[Z=e,]=MP[Z =e,] %

p-values and E-values assess the statistical significance of
observed (normalized) MFEs. If a p-value and its corre-
sponding E-value are small, it is considered unlikely that the
observed MFE is the result of a random complementarity
between miRNA and target, and a biological meaning can
be assumed. p- and E-values thus guide the user as to which
results are likely to be correct predictions. Estimation of
EVD parameters based on MFEs from random target se-
quences is implemented in the accompanying program
RNAcalibrate.

Linear correlation between minimal duplex energies
and extreme value distribution parameters

Figure 6 shows a scatter plot of minimal duplex energies
(MDEs) of Drosophila miRNAs and location and scale pa-
rameters of fitted EVDs. The MDE of a miRNA is the best
energy that can be achieved, and is easily calculated by
hybridizing the miRNA with its reverse complement. Note
that we are not saying here that such a complete hybridiza-
tion would be functional in the miRNA pathway. The plots
show a strong linear correlation between MDEs and loca-
tion and scale parameters. For both data sets, the correla-
tion coefficient is —0.86. This is in itself an interesting ob-
servation, but can also be used to estimate extreme value
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parameters quickly. Instead of searching a large set of ran-
dom sequences, it suffices to calculate the MDE of a miRNA
and then calculate location and scale parameters on the
basis of a linear regression line of the scatter plots. The
linear regression only has to be done once and can subse-
quently be used for all miRNAs. In fact, slopes and inter-
cepts of these lines are part of RNAhybrid, thus allowing the
immediate calculation of p-values without calibration. To
be most accurate, however, one is advised to perform a
calibration, as individual data points might deviate strongly
from the regression lines. This is more important for hu-
man, with correlation coefficients of —0.46 and —0.53, and
worm, with correlation coefficients of —0.47 and —0.45.

Poisson statistics of multiple binding sites

Recent publications suggest that multiple potential binding
sites of a miRNA in a single target are good evidence for the
target being regulated by the miRNA (Enright et al. 2003;
Lewis et al. 2003; Stark et al. 2003). If we consider a poten-
tial binding site being a rare event in our random model,
the number of binding sites can be approximated by a Pois-
son distribution. Then, the probability that the number N
of binding sites equals k, is
\K
P[N=k]= Fexp*x (8)

with A being the expectation E[N]. For small p-values, we
have E[N]=p, thus, we can set A = p, where p is the largest
p-value of the k binding sites. We define k as the number of
binding sites with a p-value not larger than 0.1. The prob-
ability of at least k binding sites is then

k-1
P[N=k]=1- > P[N=i]. 9)
=0
3r ‘
£ 25
?.-? - = . |
B 2 T g |
15 s |
60 -55 50 45 —40 35
025 ‘
., 02 o -
L_E L A |
015 L L
-3 55 50 —as —40 35

minimal duplex energy

FIGURE 6. Linear correlation between minimal duplex energies
(MDEs) and extreme value distribution parameters. The rop plot
shows MDEs of Drosophila miRNAs (x-axis) and corresponding fitted
location parameters (y-axis). The bottomn plot shows the same MDEs
and corresponding fitted scale parameters. The data points are highly
linearly correlated with a correlation coefficient of —0.86 for both data
sets.
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Comparative analysis of orthologous targets

It has been noted that it is difficult to make significant target
predictions when searching sequences from a single organ-
ism, and that targets should be predicted in a comparative
analysis of multiple organisms (Enright et al. 2003; Lewis et
al. 2003; Stark et al. 2003; Rajewsky and Socci 2004). If two
orthologous sequences, for example, one from D. melano-
gaster and the other from D. pseudoobscura, are searched
with the same miRNA, resulting in two optimal duplexes
with negative normalized MFEs of e, and e,, respectively,
the joint probability of such energies occuring by chance,
the joint p-value, is defined as

P[Z,=e,Z,=¢,|=(max{P[Z=¢,], P[Z=¢,]})" (10)

assuming that in both organisms, random energies are iden-
tically distributed, and that the targets are independent. In
the general case of an arbitrary number of orthologous se-
quences, the maximum is taken over all individual p-values
and raised to the appropriate power:

PlZ,=e,. ... 72, =¢]
=(max{P[Z=¢],. . ., P[Z=¢])". (1)

The treatment of orthologous targets as statistically in-
dependent sequences is not always justified. For example,
two 3"UTR sequences can share large blocks of similar se-
quence that might have been conserved during evolution,
because they are functionally important in regulatory pro-
cesses that are independent of the miRNA pathway. If no
such regions in a given set of orthologous sequences exist,
there can still be a strong dependence due to a very similar
nucleotide or dinucleotide composition that gives the
miRNA at hand plenty of opportunity for energetically
good bindings. In general, the effective number of se-
quences, kg, lies between 1 and the actual number k:

1=k, =k (12)

To assess the degree of dependence in the context of
miRNA/target duplex optimization, we do the following.
We generate random miRNAs following the same dinucleo-
tide distribution as the given miRNA and search the given
orthologous target sequences (usually two or three). For
each of the targets, this gives rise to an empirical distribu-
tion of normalized MFEs, on the basis of which we estimate
target-specific EVD parameters as described above. Using
these parameters, the normalized MFEs can be transformed
into p-values. The p-values are then combined into joint
p-values as in Equation 11, but with k" instead of k, ranging
between 1 and k. For each of these k', we evaluate its good-
ness by the following rationale: If the joint p-values are good
estimates, the empirical cumulative density function (CDF)
is more or less a straight line. Thus, the best k" (which is
then our k), is the one that makes the empirical CDF as

straight as possible under a squared error measure. Because
we are especially interested in small p-values, the errors are
weighted with a reverse function. Together:

. 1
keff: argkmln E(X, y)ecdf (k') )_C (}/ - x)Z (13)

where CDF(k') is the empirical CDF that results from using
k" in the calculation of joint p-values.

The statistics of orthologous targets can be combined
with the statistics of multiple binding sites in a straightfor-
ward way. For each of the orthologous sequences, Poisson
p-values are calculated with the Poisson approximation as
in Equation 9, and the results are combined into joint p-
values following Equation 11, where the P[Z=e¢;] are re-
placed by the corresponding Poisson p-values, and the ex-
ponent is replaced by k4 from Equation 13.

Prediction of Drosophila miRNA targets

As an application more challenging than the small C. elegans
data set, we used RNAhybrid, RNAcalibrate, and RNAef-
fective for the prediction of miRNA targets in Drosophila
and Anopheles. To this end, we searched 3'UTRs from D.
melanogaster, D. pseudoobscura, and A. gambiae. The Dro-
sophila sequences were the same as in Stark et al. (2003;
kindly provided by A. Stark, pers. comm.). The Anopheles
sequences were downloaded from the Ensembl database
(Hubbard et al. 2002). In analogy to the construction of the
D. pseudoobscura data set, the Anopheles set consists of se-
quences that have an ortholog in D. melanogaster. Where no
3'UTR was known, we selected 2 kb of the downstream
sequence instead.

The three data sets were searched with 78 Drosophila
miRNAs, forcing the duplexes to form perfect helices from
nt 2 to 7 in the miRNAs. The MFEs were normalized by
their lengths, and individual hit p-values, Poisson p-values
for whole sequences, and joint p-values for orthologous
sequences were calculated. The individual p-values were
based on miRNA-specific simulations on 5000 random tar-
get sequences per miRNA using RNAcalibrate. The random
target sequences were generated according to the dinucleo-
tide distribution of the D. melanogaster 3'UTR data set, with
lengths normally distributed with mean 500 and standard
deviation 100. To enhance sensitivity and selectivity in the
twilight zone, we first collected hits with joint E-values of
up to 10, and then repeated the calibration for each of the
hits, generating random sequences following target-specific
dinucleotide frequencies. This procedure avoids artefactu-
ally good or bad E-values that are due to deviating dinucleo-
tide distributions in individual target sequences. Further,
for all hits, we calculated the effective number of ortholo-
gous sequences with RNAeffective. This avoids artefactually
good E-values that are due to statistical dependences be-
tween orthologous targets. We also restricted the analysis to
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those cases in which a miRNA has at least one hit each in D.
melanogaster and D. pseudoobscura. Due to the multiple-
testing scenario, we adjusted E-values conservatively by a
factor of 6, corresponding to three Poisson tests (one, two,
or at least three hits per target of various quality) times two
tests from the comparative study (with or without a hit in
A. gambiae).

Previously and newly predicted miRNA targets
in 3’UTRs

We were able to predict known and new miRNA targets in
Drosophila. For the bantam miRNA, the previously identi-
fied target hid (Brennecke et al. 2003) has an E-value of 0.29
(with two significant hits in D. melanogaster, two in D.
pseudoobscura, and none in A. gambiae, abbreviated as 2/2/
0). The best prediction (E = 8.5e-4, 2/1/1) is nervous fingers
1, which is required for proper CNS axon guidance (Kuzin
et al. 2003). We also identified Distal-less (E = 0.18, 2/2/0),
which is specifically expressed early in developing insect
limbs, encoding a homeodomain transcription factor (Pan-
ganiban and Rubenstein 2002).

The proapoptotic genes grim, reaper, and sickle have been
shown experimentally to be targets of miR-2 in Stark et al.
(2003). There, however, only grim and reaper are among the
top predictions, whereas we predicted all three targets with
significant E-values. grim was predicted as miR-2a target
(E=0.082, 1/1/0), miR-2b target (E=0.43, 1/2/0), and
miR-2c target (E=0.27, 1/1/0), reaper as miR-2a target
(E=0.0037, 1/1/0), miR-2b target (E=0.11, 1/1/0), and
miR-2c target (E = 0.057, 1/1/0), and sickle as miR-2b target
(E=0.33, 2/2/0). A very interesting candidate is spastin
(miR-2b, E = 4.8, 1/1/0; miR-2c, E = 0.35, 1/1/0) whose hu-
man homolog plays a major role in dominant hereditary
spastic paraplegia, where spastin overexpression causes mas-
sive death of cells (Orso et al. 2003). This apoptotic phe-
notype fits well into the picture of miR-2 as a regulator of
proapoptotic genes. Weak hits are Hairy/E(spl)-related with
YRPW motif (miR-2c, E = 2.2, 1/1/0; Lai 2002) and the an-
tiapoptotic gene tartan, which supports cell survival in the
Drosophila wing imaginal disc (Milan et al. 2002; miR-2a,
E = 3.14, 1/1/0). The latter hit suggests the possibility that
miR-2 regulates apoptotic genes in a more general sense.

Among the top scoring hits for miR-7, we find members
of the Notch signaling pathway that were described in Stark
et al. (2003) as follows: E(spl) region transcript m3 (E = 0.05,
1/1/0) and Twin of m4 (E = 8.6e-4, 2/2/0). Not predicted by
Stark et al. (2003) was the E(spl) region transcript mry
(E=0.56, 1/2/0). We also weakly identified Him (E = 1.8,
1/2/0), which shows a highly restricted expression pattern in
the Drosophila wing disc (Butler et al. 2003) and hairy
(E = 6.4, 1/1/0), which in Stark et al. (2003) was among the
top 10 hits and experimentally verified. Our best prediction
was CG8394 (E =5.7e-4, 2/3/3), a homolog of unc-47,
which is localized to synaptic vesicles (Eastman et al. 1999),
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suggesting that in addition to transcriptional regulation,
unc-47 might also undergo post-transcriptional regulation.

Stark et al. (2003) suggest the possibility that miR-277
might function as a metabolic switch in the valine, leucine,
and isoleucine catabolic pathway. This was supported by
their prediction of seven members from that pathway as
putative targets. In our analysis, however, we only identified
one target with a small E-value, CG1673 (E = 0.09, 2/2/0),
and two other previously reported hits with weak E-values,
CG15093 (E=8.3, 2/1/1) and CG1140 (E =17, 1/1/0). The
D. melanogaster and D. pseudoobscura 3'UTRs show high
sequence similarity. For example, the effective number of
orthologous sequences for CG15093 is 2.3. Had this not
been taken into account, the E-value would have been 0.96.
For CGI1140, with an effective number of 1.6 (for two se-
quences), the E-value would have been 3.5. In such cases, a
conserved miRNA binding site cannot be interpreted as
evidence of miRNA regulation, as it might be an artefact of
the overall sequence conservation. However, the question
would be why several of these functionally related targets
appear among the top, if not significant predictions.
Whereas a miRNA-independent regulation that is directed
at conserved elements in the 3'UTRs of the genes in ques-
tion might be the answer, the mechanism of regulation by
miR-277 proposed by Stark et al. (2003) cannot be ex-
cluded. As the authors point out, it remains to be deter-
mined whether this is the case.

In the overall analysis, 227 predicted targets had good
adjusted E-values of up to 1.0 per miRNA, thus, with an
overall expected number of 78. This is a signal-to-noise
ratio of 2.9:1, which is very close to the signal-to-noise ratio
of 3.2:1 reported in Lewis et al. (2003) on mammalian se-
quences, although these might not be comparable to the
insect sequences analyzed here.

A total of 22 predicted targets had very good E-values of
<0.01 per miRNA, thus, with an overall expected number of
0.78 and a signal-to-noise ratio of 28:1. In addition to ner-
vous fingers 1, reaper, and Twin of m4 (see above), this list
contains Cytochrome P450-18al as target of miR-276b
(E = 3.7e-4, 1/1/0), I channel as target of miR-2b (E = 3.4e-
3, 1/1/2), Kinesin heavy chain as target of miR-280 (E = 5.1e-
3, 1/1/0), Smg5 as target of miR-317 (E = 4.3e-4, 3/3/0),
Timl3 as target of miR-314 (E = 6.7e-5, 1/1/0), comm?2 as
target of miR-2a (E =7.3e-3, 2/2/0), miR-2b (E = 4.4e-3,
2/2/0), and miR-2c¢ (E=8.1e-3, 2/2/0), and CGI10005,
CG15125, CG2118, CG7713, CG8394, CG9298, and CG9746.

Predicted targets for all miRNAs are available as Online
Supplemental Material at http://www.techfak.uni-bielefeld.
de/persons/marc/mirna/targets/drosophila/.

Restriction to genes important for fly body patterning

One major insight from the above statistical analysis is that
only a small number of miRNA targets might be signifi-
cantly predictable. This is not only due to the shortness of
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the miRNAs, but also to the large data set of 3'UTRs. The
significance can be increased by restricting the potential
target set to a smaller number of genes. This is done in
Rajewsky and Socci (2004), where the analysis focuses on 31
genes important for fly body patterning. Because the num-
ber of trials drops from roughly 10,000 3'UTRs to 31, E-
values of predicted binding sites in these 31 genes are de-
creased about 320-fold. In Rajewsky and Socci (2004), 39
high-scoring putative target sites are reported. We repeated
our experiment described above with E-value cutoffs cor-
rected to reflect the data size of 31 3'UTRs, demanding at
least one D. melanogaster and one D. pseudoobscura hit,
without recalibration and calculation of effective numbers
of orthologous sequences, thus being close to the specificity
of the statistical approach in Rajewsky and Socci (2004),
which is miRNA, but not target-sequence specific. Our
search resulted in 39 hits with individual E-values (adjusted
by a factor of 6) up to 1.0, which is relatively close to the
expected number of 78, and incidentally the same as in the
above study. A total of 11 hits in four genes have E-values
of <0.1, which is roughly the same as the expected number
of 7.8. We repeated the analysis with a target-specific reca-
libration as described above, which resulted in 51 hits up to
E=1.0, 18 hits up to E=0.1, and five hits up to E=0.01.
These five top hits are tailless (hit by miR-2b, 1/1/0; by
miR-2c, 1/1/0; and by miR-92a, 1/2/0), empty spiracles (hit
by miR-276a, 1/2/0), and hairy (hit by miR-210, 1/1/0).

A reinvestigation of Rajewsky and Socci (2004) leads to
the following results. The authors define score thresholds,
such that they discover 84% of the known targets in their
training data set, at which random matches are expected to
occur every 4000 bases of scanned sequence. For 31 se-
quences of average length 780 [estimated from 30 3"UTRs
of the genes in question that we downloaded from the En-
sembl database (Hubbard et al. 2002)], one can thus expect
6.1 random matches per miRNA. The expected number of
matches in the orthologous sequences would then be 1.2
(6.1 x 780 over 4000), which leads to an overall expected
number of orthologous hit pairs of 89 for 74 miRNAs.
These are again more than the 39 predicted binding sites.

Our two analyses confirm each other in their conclusion
that the majority of binding-site predictions in the set of 31
fly body-patterning genes are not significant. However, this
does not unequivocally mean that these predicted binding
sites are not functional, and hairy is evidence to the con-
trary, as it has been shown in Stark et al. (2003) to be a
target of miR-7, and this combination is predicted by Ra-
jewsky and Socci (2004) as well as by our method (E = 0.01,
1/1/0). Also, using RNAhybrid with recalibration, the out-
put is slightly enriched in hits with E-values smaller than
0.01, and these hits are different from the ones reported by
Rajewsky and Socci (2004) for the genes in question. Be-
cause we have shown our method to predict known target
sites significantly, we propose that our top predictions are
worth testing in the appropriate wet-lab experiments.

Prediction of miRNA targets in coding sequence

In addition to 3'UTRs, we analyzed coding sequences from
D. melanogaster and A. gambiae, downloaded from the En-
sembl database (Hubbard et al. 2002). Duplexes were not
forced to have perfect 5'-helices. A search with 78 miRNAs
resulted in coding sequence hits in two genes or ortholo-
gous gene pairs with individual E-values of up to 1.0 (ad-
justed by a factor of 9, corresponding to three Poisson tests
times three tests from the comparative study), which is
39-fold lower than the expected number of 78 hits. This
strong under-representation suggests that not only animal
miRNAs do not regulate their targets by binding the coding
part of mRNAs, but that the evolution of coding sequence
might have actively selected against random binding sites.

Because coding sequence can be expected to be conserved
to a higher degree than sequence from untranslated regions,
orthologous sequences cannot be assumed to be statistically
independent in general. Calculating the effective number of
orthologous sequences as in Equation 13 is thus a necessity
in a comparative study of multiple organisms. In the above
analysis, 10 miRNAs had hits in both a D. melanogaster gene
and its A. gambiae ortholog with an E-value of up to 10
(adjusted by a factor of 3). The same analysis without cal-
culating the effective number of orthologous sequences re-
sulted in 54 such hits.

DISCUSSION

We have presented a method for the prediction of miRNA/
target duplexes. A study of 3'UTRs from D. melanogaster,
D. pseudoobscura, and A. gambiae resulted in the significant
prediction of known and new miRNA targets, thus demon-
strating its usefulness. An analysis of coding sequences from
D. melanogaster and A. gambiae produced far less hits than
expected, suggesting that such binding sites might be evo-
lutionarily under-represented to protect the coding parts of
mRNA.

The core program of our method, RNAhybrid, is fast
enough to allow large databases of long potential target
sequences to be searched, and is effective, in that it solves
the addressed problem directly without having to use make-
shift adaptations of existing RNA secondary structure pre-
diction programs. Similar programs exist, but exhibit sev-
eral disadvantages in this context. RNAfold from the Vi-
enna RNA package can consider user-defined constraints
that specify the kind of base pairings at certain positions.
For example, one can concatenate the target and the
miRNA with a small linker sequence, as in Stark et al.
(2003), and set constraints such that all target nucleotides
can pair only downstream and all miRNA nucleotides can
pair only upstream, thus forbidding intramolecular base
pairings. This still leaves the necessity and potential artefacts
of a linker sequence. RN Acofold, which is part of the latest
B-version of the same package, can hybridize two se-
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quences, which are concatenated internally without an ex-
plicit linker; however, constraints have no effect here, thus
leaving the problem of intramolecular hybridizations. One
could argue that such hybridizations should be allowed to
model competition between self-hybridization and miRNA/
target hybridization. However, if a miRNA binds to a loop
region of the target, the corresponding structure of the con-
catenated sequences would constitute a pseudoknot that,
for complexity reasons, cannot be handled by standard fold-
ing programs (for recent developments on special classes of
pseudoknots, compare Rivas and Eddy 1999 and J. Reeder
and R. Giegerich, “Design, Implementation and Evaluation
of a Practical Pseudoknot Folding Algorithm based on
Thermodynamics,” in prep.). A new version of the mfold
program allows hybridization of two sequences, which are
input concatenated with three consecutive letters L. When-
ever these L’s occur in a hairpin loop, this loop is treated
not as a hairpin loop, but as an external loop. However,
although base-pair constraints can be given, they have no
effect, thus, self-hybridizations cannot be avoided. Another
program, PairFold from the RNAsoft suite (http://www.
rnasoft.ca) also allows self-hybridizations.

All of the above programs have the drawback that they
are adaptations of the original folding algorithm, thus pre-
serving the O(n”) time complexity, even if calculations are
sped up by base-pair constraints. For example, running
RNAfold with appropriate base-pair constraints on the C.
elegans UTR database with the ler-7 miRNA takes 5 min,
which is 13 times slower than RNAhybrid. The difference
between the two methods grows larger with larger target
sequences. Running RNAhybrid on the longest sequence
from this database, 3CEL000087 with 2837 bp, takes 0.21
sec, whereas RNAfold needs 38 sec, which is 181 times
slower. Although the absolute values in this comparison are
relatively small, the speed of RNAhybrid opens new vistas
for the analysis of large data sets. In addition, none of the
available programs offers the calculation of suboptimal,
nonoverlapping binding sites.

Searching large databases inevitably means generating
random hits. This has long been recognized in other areas of
sequence analysis, such as protein database searching, and
also in the recent literature about miRNA target prediction.
The latter, however, lacks in places the thorough approach
presented here. We have addressed a large number of sta-
tistical issues in a rigorous way, providing length normal-
izations of binding energies, modeling normalized energies
with extreme value distributions in a miRNA and target-
specific way, modeling multiple binding sites with a Poisson
approximation, estimating statistical dependences between
orthologous genes, and assigning significance estimates (E-
values) to individual target predictions. Some aspects of our
approach, however, are still computationally expensive. In
our study of Drosophila 3"UTRs, we recalibrated the EVD
parameters specific for targets that looked promising with
more general parameters. Each recalibration, corresponding
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to one miRNA/target pair, meant searching 5000 random
sequences. The calculation of the effective number of or-
thologous sequences meant searching two or three putative
orthologous targets with 5000 random miRNAs. Even with
our fast algorithm and implementation, the whole analysis
took a number of days on a cluster of 100 netra CPUs.
Nevertheless, even without recalibration and effectiveness
calculations, the predictions should be useful, and in the
above analysis, the high-scoring hits were still present (data
not shown). RNAhybrid can also be used in a very simple
version to find binding sites in an interesting gene that is
supposed to be regulated in the miRNA pathway. For larger
experiments, however, the statistical issues discussed in this
study provide a rationale for a coherent evaluation of sig-
nificance.
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